欢迎来到亿配芯城! | 免费注册
你的位置:CYPRESS(赛普拉斯)半导体IC芯片全系列-亿配芯城 > 话题标签 > MEMS

MEMS 相关话题

TOPIC

MEMS器件广泛应用于机械、光学、射频、生物等领域,气体检测正是其重要应用方向之一。气体检测最常用的方法是基于气敏涂层的传感器,利用其气敏层与被检测物质之间的相互作用而实现气体检测目的。然而,气敏层会导致器件出现老化、可靠性下降和响应时间延长等问题。尤其是在一些特定的应用中(例如恶劣环境),MEMS器件制备常用的硅(Si)或硅基材料无法满足需求,而碳化硅(SiC)由于出色的物理性能,成为制备高性能MEMS器件的理想材料。 据麦姆斯咨询报道,针对上述问题,来自法国图尔大学(University
高温压力传感器广泛应用于工业、航空航天等领域,用来监测航空发动机、重型燃气轮机、燃煤燃气锅炉等动力设备燃烧室内的压力,耐高温和高可靠性是对其最基本的要求。 常规的单晶硅扩散式压阻压力传感器在超过120°C环境下使用时,会由于内部PN结出现漏电而导致传感器性能急剧下降,进而导致失效。而工业、航天航空等领域使用的压力传感器需要满足2个基本需求:高温和高可靠性。因此我们也通常把这类压力传感器称为高温压力传感器。对MEMS高温压力传感器最基本的需求是在至少125°C环境下工作。以传感器实现高温的特征进
据麦姆斯咨询报道,综合电子元器件全球制造商村田(Murata)近日发布了一款新的6轴MEMS惯性传感器SCH16T-K01,可实现高精度机器控制和定位应用。这款传感器成为村田下一代6轴SCH16T系列的首款产品,未来该系列还将推出更多版本的产品。 村田利用久经行业验证的3D MEMS工艺升级并强化了SCH16T系列产品。该传感器旨在满足市场对更优定位解决方案的需求,提供了无与伦比的性能水平,由多个添加的时间同步功能提供支持。 SCH16T-K01包括一颗先进的MEMS陀螺仪,其典型零偏不稳定性
全球领先的电子元器件制造商村田(Murata)近日发布了其全新的6轴MEMS惯性传感器SCH16T-K01。这款产品是村田下一代6轴SCH16T系列的首款产品,未来该系列还将推出更多创新版本。 村田通过采用先进的3D MEMS工艺,对SCH16T系列产品进行了升级和强化。这款传感器专为满足市场对更优定位解决方案的需求而设计,提供了无与伦比的性能水平。其出色的性能得益于多个新增的时间同步功能,这些功能确保了传感器的高精度和可靠性。 SCH16T-K01的发布标志着村田在MEMS技术领域的又一重大
据麦姆斯咨询报道,近日,北京赛微电子股份有限公司(以下简称“赛微电子”) 全资子公司Silex Microsystems AB(以下简称“瑞典Silex”)以 MEMS工艺为某客户制造的OCS(Optical Circuit Switch的缩写,即光链路交换器件) 完成了工艺及性能验证(工艺开发与试产的总耗费时间超过7年),并于2023年12月22日收到该客户发出的批量采购订单,瑞典Silex开始进行MEMS-OCS的商业化规模量产。 该MEMS-OCS基于8英寸MEMS工艺和设计技术制造,结
热式气体流量传感器简介 热式气体流量传感器是基于流体传热学原理的一类传感器,利用 MEMS 热式原理对管路气体介质进行流量监测。 流量芯片由两个热偶堆和一个加热电阻组成,热偶堆对称分布在加热电阻的上、下游,加热电阻和热偶堆的热结处于一个隔热底座上。 加热电阻对热偶堆的热结进行加热,热偶堆热结和冷结之间的温度梯度导致输出电压。当流体静止时,加热电阻两侧对称位置的温度是相同的;当流体从右向左流动时等温线向左侧倾斜,加热电阻两侧对称位置的温度不再相同,温差可由置于加热电阻两侧的热偶堆测定 。 由于流
热发射光谱在环境监测、天体物理、医学诊断和药物研发等领域得到广泛关注和利用。基于微机电系统的红外光源虽然有效缩小了器件体积,但仍存在光谱分布范围广、发射率较低等缺点,通过对微纳结构的合理利用,可以控制热发射的光谱特性,有效提高窄带发射性能。 据麦姆斯咨询报道,近期,电子科技大学长三角研究院和光电科学与工程学院的科研团队在《激光与光电子学进展》期刊上发表了以“基于微纳结构的MEMS红外窄带热光源及其应用”为主题的文章。该文章第一作者为李若禺,通讯作者为郭小伟。 本文对MEMS热辐射红外光源技术原
MEMS加速度计通过微结构内发生的电容、电阻或电荷(压电)变化来检测机械加速度,现已成为仅次于压力传感器,应用量排名第二的MEMS器件。MEMS加速度计一直以来常用于振动监测、汽车测试和惯性导航等应用,最近的研究凸显了MEMS加速度计在健康监测和植入式助听器中的应用潜力。早期的MEMS加速度计采用了硅中的压阻耦合。硅微机械加工技术的进步,实现了更加复杂的可动微机械结构的可靠制造,从而构建了带有梳齿状驱动器的电容式加速度计。近些年,压电MEMS加速度计开始变得流行起来。与压阻和电容耦合加速度计相
压力是流体内部测量的基本参数之一,其对流体控制和设备状态监测至关重要。因此,压力传感器在汽车、医疗和航空航天等领域有着广泛的应用。通过精确的压力测量,可以准确监测设备状况,预测潜在的故障。过去几十年来,随着智能仪器仪表的不断进步,人们对压力传感器满足更严格要求的需求日益增长,其中包括:更高的精度、增强的环境适应性、更精细的分辨率以及更小的芯片/封装尺寸等。压力传感器可以根据传感机制分为压阻式、电容式、谐振式、压电式等。 MEMS压力传感器具有诸多优势,包括易于批量生产、小型化、成本效益以及易于
残余应力一直是MEMS技术发展中的一个重要问题,MEMS 器件中的残余应力会对器件的性能以及可靠性产生重要影响。根据其产生的原因,一般可将残余应力分为本征应力和热失配应力两大类。本征应力的成因比较复杂,主要是由于晶格失配引起的,而热失配应力是由于不同材料的热膨胀系数差异引起的。   什么是本征应力? 本征应力又称内应力,是指在室温和零外加负载的情况下,材料自身内部存在的应力,分为压应力和张应力。在MEMS薄膜材料中,表现尤为突出,当内应力在薄膜材料厚度方向分布不均匀时,会产生应力梯度。当应力梯